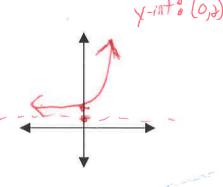
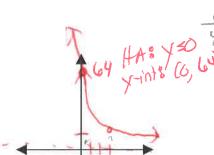
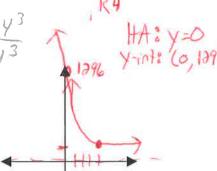

Identify the changes to the parent graph then find the HA, y-int., and increasing/decreasing.


1.
$$y = 5^{x+2}$$

2.
$$y = -3x-2$$

3.
$$y = 2^x + 1$$





4.
$$y = (1/4)^{x-3}$$

5.
$$y = 6 - (x - 4)$$

6. $y = (1/2)^{x} + 4$

Solve the following problems for x.

7.
$$4^x = 2^{3x-4}$$

$$\partial_{3x} = \partial_{3x-4}$$

$$8. \ 3^{x-2} = \frac{1}{243} \ \frac{1}{3}$$

9.
$$e^{2x\cdot 4} = e^8$$

Show all work and answer the questions for each of the following.

10. A bank offers an APR of 8.5% and compounds interest semi-annually for savings accounts. If you were to deposit \$2250, what is the value of the account in 5 years?

- 11. Determine how much money will be in a bank account in 10 years if you deposit \$2000 and it is compounded continuously.
 - a) How much is the rate was 3%?

b) How much is the rate was 3.5%?

- 12. Determine the amount of money in a money market account after 7 years providing an annual rate of 5% compounded daily if Marcus invested \$2000 and left it in the account for 7 years.
 - a) How much money is in his account now?
 - b) How much interest will he have earned?

- 13. Let Q represent the mass of iridium whose half-life is 2300 years. The quantity of iridium present after t years is given by: $Q = 12 \left(\frac{3}{5}\right)^{\frac{1}{2300}}$
 - a. Determine the initial quantity.
 - b. Determine the quantity present after 1000 years.